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In  this paper the translatory motion of a compound drop is examined in detail for 
low-Reynolds-number flow. The compound drop,.consisting of a liquid drop or a gas 
bubble completely coated by another liquid, moves in a third immiscible fluid. An 
exact solution for the flow field is found in the limit of small capillary numbers by 
approximating the two interfaces to be spherical. The solution is found for the general 
case of eccentric configuration with motion of the inner sphere relative to the outer 
together with the motion of the system in the continuous phase. The results show 
that the viscous forces tend to move the inner-fluid sphere towards the front 
stagnation point of the compound drop. For equilibrium of the inner sphere with 
respect to the outer there must, therefore, be a body force towards the front. This 
can only be achieved with the necessary condition that there be a buoyant force on 
the inner sphere, opposite to that of the compound drop in the continuous phase. 
For a given set of fluids, two or four equilibrium configurations may be found. Of 
these only one or two, respectively, are stable. The others are unstable. For the special 
case of concentric configuration, the equilibrium is always metastable. 

1. Introduction 
In  this paper we examine the fluid dynamics associated with a compound drop 

consisting of a drop or a bubble completely engulfed by a finite amount of another 
immiscible liquid. In  particular, we investigate the translatory motion of such 
compound drops in a distinct third fluid for the general case when the spherical 
interfaces are eccentric (see figure 1). While the subject of compound drops was 
studied by Chambers t Kopac and Kopac t Chambers as early as 1937, it is only 
in the last two decades that it has emerged as a separate entity. The recent interest 
has been aroused by applications such as direct-contact heat exchange (Sideman & 
Moalem-Maron 1982) and membrane technology. The concept of coating drops and 
bubbles with liquid membranes has received recent attention concerning application 
in separation processes. Of particular interest in this regard is the area of artificial 
blood oxygenation (Li t Asher 1973). Direct-contact heat exchange is achieved by 
passing drops of one liquid through another immiscible liquid. If the drop liquid 
undergoes evaporation we have compound drops while the liquid and its vapour are 
both present. Similarly a vapour may be bubbled through an immiscible liquid. While 
the vapour is condensing compound drops will be formed. Although there have been 
a large number of experimental studies dealing with the translation of compound 
drops in relation to heat transfer (e.g. Mercier et al. 1974; Hayakawa t Shigeta 1974, 
Selecki t Gradon 1976, Tochitani et al. 1977; Mori 1978) few of these studies have 
addressed the theoretical fluid mechanics. The first thorough theoretical treatment 
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FIGURE 1.  Schematic of the flow past a compound multiphaae drop, in eccentric configuration. The 
uniform stream has a velocity U relative to the outer spherical interface, which is fixed in the 
coordinate system. The inner spherical interface moves at a velocity V relative to the outer 
interface. 

of the statics of compound drops was carried out by Torza k Mason (1970). Recent 
theoretical studies on the dynamics include the analysis by Johnson & Sadhal(l983). 
They examined translating drops and bubbles partially coated with thin films by 
applying the lubrication-theory approximation. 

The fluid motion resulting from the translation of fully encapsulated drops was 
examined by Rushton & Davies (1983) for the special case in which the encapsulating 
fluid is spherically concentric with the drop. The case of a melting ice particle coated 
with a layer of liquid water, translating in the atmosphere, has been treated by 
Rasmussen, Levizzani & Pruppacher (1982). They obtained an analytical solution for 
the spherically concentric case and a numerical solution for the eccentric cases. In 
addition to the flow problem, they treated the heat transfer for these configurations. 
In both of these analyses the inner sphere has been considered to be stationary with 
respect to the outer one. This assumption can be invalid in general as will be shown 
by a complete force balance on the inner sphere. 

The thermally driven motion of eccentrically positioned gas bubbles within liquid 
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drops has been investigated by Shankar, Cole & Subramanian (1981) and Shankar & 
Subramanian (1983). Their principal result is a prediction of the bubble migration 
velocity in zero gravity for a prescribed temperature field on the drop surface. Some 
of the interest in this problem has been brought about by the potential application 
of glass processing in space. 

With regard to oscillations of compound drops there have been numerous theoretical 
and experimental investigations. An extensive review of these studies, as well as those 
discussed above, is given by Johnson & Sadhal (1985). 

The present investigation deals with the translation of an eccentrically encapsulated 
liquid drop in the limit of low Reynolds number. Also, the capillary numbers are taken 
to be small enough that the two interfaces may be assumed to be spherical. The exact 
solution in the limit of these approximations is found by using the bipolar coordinate 
system. This type of coordinate system was introduced by Jeffery (1912) and was 
used for Stokes flow past two spheres by Stimson & Jeffery (1926). It has subsequently 
been used by several authors for problems involving two spheres, or for a sphere near 
a plane. In  particular, such problems involving solid spheres have been attacked by 
O'Neill (1964), Goren & O'Neill (1971) and Lee & Leal (1980). The more complex 
problems concerning the translation of two fluid spheres have been solved by Rushton 
& Davies (1973, 1978) and by Haber, Hetsroni & Solan (1973). The problem of the 
thermocapillary migration of a gas bubble normal to a plane surface has been treated 
by Meyyappan, Wilcox & Subramanian (1981) and Sadhal(l983). 

In  the next section we define the problem and derive its analytical solution. 

2. Analysis 
2.1. Statement of problem 

We consider a liquid drop (or gas bubble) surrounded by a finite amount of liquid, 
forming a compound drop. This compound drop lies in a uniform stream of velocity 
U moving parallel to the line of centres of the two spherical interfaces. Here the 
different phases are referred to as fluid I ,  fluid 2 and fluid 3 as shown in figure 1. In 
the limit of large interfacial tension forces as compared with the viscous forces, the 
2-3 interface is taken to  be fixed in a spherical shape with tangential mobility. The 
1-3 interface is also taken to be a sphere with tangential mobility, but i t  has 
translatory velocity V parallel to the line of centres. The velocity of translation is 
determined by the total force balance on the inner sphere. 

The governing equations in the limit of Stokes flow are as follows: 

( i  = 1,2,3; no sum), 
Pz V 2 U t  = vpr ,  
v-u, = 0 

where the subscripts refer to the three fluid phases, u is the velocity, p is the pressure 
and ,u is t,he viscosity. The boundary and the interface conditions are as follows. 

(i) Uniform stream at inJinity: 

u2+ut as (r2+z2)1-+m, (2.3) 
where 2 is a unit vector along the line of centres. 

(ii) Zero normal velocity at the outer interface: 

u2'n23 = u3*n2, = 0, 

where n23 is a unit normal at the 2-3 interface. 
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(iii) Continuity of tangential velocity at the outer interface : 

u 2 g  = tz39 

where t,, is the unit projection vector at the 2-3 interface. 
(iv) Continuity of shear strms at the outer interface: 

(d2) -r(3)):ng3 t,, = 0, 

where dl) represents the stress tensor in the respective fluids. 
(v) Continuity of nomnal velocity at the inner interface: 

ul*nl, = u2*n1, = VPn, , ,  (2.7) 
where nl, is a unit normal vector at the 1-3 interface and V is the unknown velocity 
of the inner spherical drop/bubble. 

(vi) Continuity of tangential velocity at the inner interface: 

(u1-u3)~t1,  = 0, . (2.8) 
where t,, is the unit projection vector at the 1-3 interface. 

(vii) Continuity of shear stress at the inner interface: 

(41) - 4 3 ) )  : nl, t,, = 0. (2.9) 

(viii) Finite velocity in phase 1 : 
u, < 00. (2.10) 

With these boundary and interface conditions, the problem is fully defined. The 
normal-stress condition at both the interfaces is satisfied in the limit of very large 
surface-tension forces. An exact solution for this problem can be obtained by the 
use of the bipolar coordinate system. This system allows us to identify each interface 
by specifying constant values of one of the coordinates. 

2.2. The bipolar coordinate system 
By carrying out the transformation 

(2.11) 

we establish the (6,  q)-coordinate system. In this system constant values of f identify 
non-intersecting eccentric spheres. We identify the 1-3 interface by 6 = El, and the 
2-3 interface by f = f,,. The radii of the interfaces are given by 

C C 

R13 = -' R23 = sinh fz3'  
(2.12) 

Here c is one half the distance between the points defined by E+ 00 and f +  - 00 on 
the z-axis. The distance between the centres may be expressed as 

where 

d = R,, [cash f,, - R C O S ~  f,,], 

= Ri3/R?.3* 

(2.13) 

(2.14) 

With a little algebra we obtain the following forms for f,, and f,, in terms of R 
and d : 

and 

(2.15) 

(2.16) 
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With specified values of R and d/RZ3 the shape is fully defined. The dimensions can 
be further defhed by specifying c or either one of the radii. We define the eccentricity 
as 

(2.17) 
d 

A t  this point it is convenient to cast the problem in terms of the Stokes stream 

€ =  
R23 - '13. 

function. By expressing the velocity components as 

(2.18) 

the continuity equation is identically satisfied. The momentum equation (2.1) is 
satisfied by = 0 (i = 1 ,2 ,3 )  where L-, is the axisymmetric Stokes operator. 
In  bipolar coordinates it is given by 

sin7 (cosht-cosq) ]$I. (2.19) 
C2 

L-, = 

The shear stresses for an incompressible Newtonian fluid may be written as 
T&) =prT($-,) (i = 1,2 ,3;  no sum), (2.20) 

where T is the operator given by 

The boundary and interface conditions (2.3)-(2.10) may now be expressed in terms 
of $, (i = 1, 2, 3). In the bipolar coordinate system we write them as 

(2.22) 

(2.23a, b )  

(2.24) 

(2.25) 

(2.26a, b)  

(2.27) 

(2.28) 

(2.29) 

We need to fhd  a solution for Stokes equation LZl($,) = 0 satisfying the boundary/ 
interface conditions (2.22)-(2.29). In bipolar coordinates, the separation of variables 
for $t is not possible in the usual manner. However, by following Stimson & Jeffery 
(1926) we may write the solution in the following separable form : 

$&'I) = (coshE-coshv)-z X ~ c , t ) ( E ) ~ ~ l ( c o s ~ ) ,  
W 

(2.30) 
n - o  
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where CAI( 
general solution for =:)([) is 
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) is the Gegenbauer polynomial of order ( n +  1) and degree -4. The 

Ez)([) = A,*(z) cosh(n-+)[+BZ(*)sinh(n-f)[ 

+C:($) cosh ( n + i ) [ + D , * ( i )  sinh (n+$)E, (2.31) 

where A:($), B*(i), n C:(‘) and D:(b) represent 12 integration constants. 

special forms : 
We select solutions satisfying (2 .22) ,  (2 .23) ,  (2 .26a) ,  (2.29) to  be of the following 

The constants An, B,, C,, D ,  and En are to be determined by the remaining bound- 
ary conditions (2 .24) ,  (2 .25) ,  (2.266),  (2 .27) ,  (2.28).  These constants are given in 
Appendix A. 

With all the boundary and interface conditions satisfied the solution is formally 
complete. However, the velocity of the inner sphere and that of the uniform stream 
need to  be specified. This is done in the next section by requiring the total force on 
each spherical interface to  be zero. 

3. Translational velocities and the drag force 
The viscous drag on each sphere may be calculated by a formula given by Stimson 

& Jeffery (1926).  For a given set of radii and an eccentricity, each viscous drag is 
a linear function of U and V .  These forces are balanced by the buoyant forces. By 
having a total-force balance on each spherical interface, the following linear equations 
are obtained (see Appendix B) : 

where f D  and FD represent the forces of viscous drag on the inner and outer spheres, 
respectively. The constants a, b, y and 6 are given in Appendix B. By solving the 
set (3 .1) ,  (3 .2)  we obtain U and V in the following dimensionless forms; 
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FIQIJRE 2. The contribution to the total drag force as function of the radius ratio for given 
eccentricities and viscosity ratios, p1 = pz. (a) E = 0.05; (b )  0.5. 

and 

where 

and FZ = -{(-y[@-@]+k- 4 4 3  l)}. 3 Rz3 

(3.4) 

(3.5) 

(3-7) 

As we see above, the other dimensionless parameters may be selected as p1/p2, p3 /pz ,  
/ h / / r u z ,  k / P z  and R z 3 / R ~ 3 .  

It must be recognized that the expression for V is the instantaneous steady-state 
velocity and is valid only in the low-Reynolds-number approximation. In a given 
system, as the eccentricity changes with the motion of the inner sphere, its velocity 
changes. The present approximation will only allow slow changes in the velocity. 

The numerical calculations of these results display some interesting features. For 
a given system of fluids with specified pt, pt, i = 1, 2, 3, and given volumes V ,  and 
V,, it is found that U changes very little with eccentricity. Therefore, its use as a 
scaling parameter for V is quite appropriate. In general V is non-zero, indicating that 
the relative motion of the inner sphere is necessary. If the condition that i t  be fixed 
is imposed then the total force on it may be non zero. The viscous force on it, as we 
see in (3.1), consists of two parts. One is the ‘primary viscous force’ which is the force 
when V = 0, and it is proportional to U .  The other is the ‘secondary viscous force’ 
which is proportional to V. The motion of the inner sphere generates the secondary 
viscous force to overcome the net force that exists without the motion. 

An examination of the total drag force FD shows that it has a strong dependence 
on the relative motion of the inner sphere. In figure 2 we show the contribution of 
V towards FD. The factor S in (3.2) is plotted as a function of the radius ratio 
R = Rl3/RZ3 for various viscosity ratios and two different eccentricities. The force 
tends to become infinitely large as the fluid shell (fluid 3) becomes infinitesimally thin. 
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1 1 ~ ~ ~ ~ 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 ,  
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FIQURE 3. The total drag as a function of the radius ratio for various values of the viscosity ratios 
and inner sphere relative velocity; (a) E = 0.05, ( b )  0.5. ---, V/u = 0.1 ; -, 0; -.-.-, 0.1. 

In figure 3 we plot FD as a function R for various values of V / U  and two different 
eccentricities. We see that, with the inner-sphere motion opposite to the uniform 
stream, FD is higher than for V = 0. The drag is lower when inner-sphere motion is 
in the same direction as the uniform stream. The reason for such behaviour is the 
necessity of external forces on the inner sphere to maintain such motion involving 
arbitrarily chosen values of V .  

The drag force FD for V = 0 varies between the bubble drag and the solid-sphere 
drag. It seems to have little dependence on 8. As the fluid shell becomes very thin, 
the solid-sphere limit is observed. This is because the motion within the thin shell 
requires a strong shear stress. This stress should be matched by the outer fluid, which 
can afford only moderate stresses. Consequently, the motion within the shell must 
weaken. In  the limit of very small thickness, the shell is practically motionless. This 
observation has been made for spherically symmetric cases by Rushton & Davies 
(1983). 

While the drag force depends strongly on the inner-sphere motion, it must be 
understood that V is a determinate quantity given by (3.4). The behaviour of V as 
a function of the eccentricity for a given system is a matter of considerable interest 
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FIGURE 4. The inner-sphere relative velocity aa a function of eccentricity. The system haa a net 
upward buoyancy, p1 = pa, ps = 0.8p2, and radius ratio of (a) 0.5 and ( b )  0.8. 
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c 
FIQURE 5.  Relative velocity of the inner sphere as a function of the eccentricity for situations of 
high viscosity of phase 3, R,,/R,, = 0.45. In case (a) pa = 0.8p2, p, = lop2, p1 = p,, the net 
buoyant force on the compound drop is upwards and in (b), p3 = lop,, p, = 0, p1 = 0, it is 
downwards. For both the cases there is the possibility of two equilibrium eccentricities. 
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FIGURE 6. The force on the inner sphere as a function of eccentricity for I.' = 0, p1 = p,. 
(a) R18/Rza = 0.3; ( b )  -, Rl,/R,3 = 0.35; ----, 0.25; -.-.-, 0.20. 

in understanding the behaviour of multiphase drops. In figure 4(a, b) we plot V / U  
versus the eccentricity E for a range of the dimensionless parameters. We see from 
these plots that in most cases there is a weak relative motion of the inner sphere. 
These cases represent fluids of comparable densities and viscosities with a net 
downward buoyant force. When the buoyant force on the inner sphere exactly 
balances the primary viscous force, we have equilibrium of the inner sphere with 
respect to the outer. This is graphically represented by the points where the plot of 
V /  U versus e intersects the horizontal axis. These points correspond to the specific 
eccentricities at which there is no motion of the inner sphere with respect to the outer 
(i.e. V = 0). In figure 5 we plot V / U  versus 8 for large shell viscosities. We see that 
in many instances the equilibrium occurs for two different eccentricities. In  general, 
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for each eccentricity there are two possible configurations : one with the inner sphere 
towards the front of the compound drop; the other towards the rear. The stability 
analysis in $4, however, shows that only one configuration for each equilibrium 
eccentricity is stable. 

The primary drag force on the inner sphere (the term a in (3.1)) is plotted as a 
function of E in figure 6. It represents monotonic behaviour in some cases but shows 
definite turning points in many instances, particularly for R < 0.5. Since this force 
is the viscous force when the inner sphere is fixed with respect to the outer, there 
must be an external opposite force to balance this out. The external force is usually 
the buoyancy, which may be represented by a horizontal straight line. At points 
where this line intersects the other curves we have equilibrium. Here again it is 
evident that there may be either one or two possible eccentricities for equilibrium. 
For a buoyant force completely outside the range of the primary drag force there 
will be no equilibrium. 

The question of the stability of the various equilibrium configurations now arises. 
This is discussed next. 

4. Stability analysis 
The primary viscous force is always in a direction opposite to the flow of the 

uniform stream. Therefore, for the compound drop having a downward buoyant force 
[p, V ,  +pa V3 > pz( V, + K)], the primary force on the inner sphere is downwards. This 
could be exactly balanced by an upward buoyant force provided p1 < p3. For a 
specific value of E, for which this balance takes place, there are two configurations 
possible. In  one case the inner sphere is off-centre towards the front stagnation point 
and in another case it is towards the rear. In both cases the primary viscous drag 
is identical. Since the buoyant force is unaffected by the different positions, both of 
them represent equilibrium configurations. Let us examine the case in which the inner 
sphere is near the front. For this purpose we make a schematic plot of V / U  versus 
the position of the inner sphere with respect to the outer (see figure 7). Here the 
different curves represent variations in the buoyant forces and/or the viscosities. We 
see that increasing the eccentricity will give it a downward velocity and decreasing 
it will give it an upward velocity. This configuration is clearly a case of unstable 
equilibrium. For the case with the inner sphere towards the rear, a similar examination 
showsstableequilibrium. Hence, a compounddropset in motion withabove-mentioned 
density requirements will reach a steady state with the inner sphere towards the rear. 
In the event that the system starts with the inner sphere towards the front with an 
eccentricity higher than the equilibrium case, the tendency would be to expel the inner 
sphere. With an initial eccentricity slightly less than the equilibrium case, the inner 
sphere will migrate from the front towards the rear until it  reaches the stable 
equilibrium configuration. 

For the opposite density requirements [p, V, +p3 V, < p2( V, + V,) and p3 < p,],  an 
unstable equilibrium results, with the inner sphere near the rear stagnation point. 
A stable equilibrium can be found near the front stagnation point. For a rising 
compound drop [p, V, +p3 V, < p,( V, + V,)] with upward buoyancy on the inner 
sphere (p, < p3),  no equilibrium can be found. Similarly with p1 V, +p3 V, > pz( V, + V,) 
and p3 < p1 an equilibrium configuration cannot be found. In both instances the 
tendency would be to expel the inner sphere towards the front. 

For the cases having two different eccentricities corresponding to V = 0 (see 
figure 5) there are four different equilibrium configurations; two near the front, and 
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V f W  

Eccentricity - 
E = l  E = O  E = l  

RQURE 7. Schematic of the inner-sphere velocity aa a function of its relative position. 0,  stable 
equilibrium; x , unstable equilibrium; x, metastable states. 

FIQURE 8. Flow streamlines for a radius ratio of 0.5 with eccentricities 
(a) 0.1 and ( b )  0.9. y, = lop2 = lopl; V = 0. 
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FI~URE 9. Double-vortex structure generated in the phase 3 fluid owing to motion of the inner-fluid 
sphere: (a) a = 0.1; (b )  0.8. ps = 5pl = 5pz; R = 0.5; V / U  = 0.04. For high eccentricity ( B  = 0.8) 
there is an additional vortex in phase 2 near the rear of the compound drop. 

two near the rear. With the density conditions p1 V, +p3 V, > pz( Vl + V,) and p1 < p3, 
the equilibrium position with the higher eccentricity and inner sphere towards the 
rear is a stable one. Similarly, the one with the lower eccentricity and the inner 
sphere towards the front is also stable. The other two are unstable. The same type 
of argument applies to the cases p1 V,+p3 V, < pz( V,+ V,), p1 > pa. In  this situa- 
tion the higher-eccentricity configuration is stable towards the front and the lower 
towards the rear. These conclusions regarding the stability are evident from figure 7. 

For the spherically symmetric case we can see that, when we balance out the body 
force and the viscous drag, the equilibrium state is a metastable one. Any disturbance 
from this state tends to move the inner sphere towards the front of the compound 
drop. 

5. The flow field 
The flow streamlines have been plotted for a variety of cases. In  many instances 

they display rather fascinating flow patterns. In figure 8 we have the streamlines for 
two equilibrium situations. Here the flow pattern within the compound drop is as 
expected. There is considerable resemblance here to the flow field numerically 
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FIQURE 10. Comparison of the flow pattern with and without inner-sphere motion: (a) V = 0, ( b )  
V = 0.2U. pa = p 2  = lopl; R = 0.5; 6 = 0.5. For sufficiently high viscosity in phase 3 the 
streamlines are completely reversed when the inner sphere moves in the same direction as the 
uniform stream. 

obtained by Rasmussen et al. (1982) for melting ice particles. For situations in which 
the inner sphere moves with respect to the outer, we observe quite interesting double 
and triple-vortex structures in some cases. In figure 9 we have the inner sphere 
moving in tdc same direction as the uniform stream. In such cases the inner-sphere 
motion generates streamlines in the opposite direction to those generated by the 
uniform stream within the shell. Consequently we have a double-cell structure within 
the fluid shell as shown in figure 9(a). For larger eccentricities a small vortex is 
generated within the continuous phase (fluid 2) as observed in figure 9(b ) .  This is 
particularly true if the shell fluid has relatively high viscosity. Additional demons- 
tration of this behaviour is given in figure 10, where a comparison of the flow patterns 
with and without inner-sphere motion are given. For cases in which the inner sphere 
moves in a direction opposite to the uniform stream, the double-cell structure is not 
present. This is demonstrated by the comparisons in figures 10 and 11. 

6. Concluding remarks 
In the present analysis we have carried out a detailed theoretical study of the 

motion of compound two-fluid drops. This study is limited to situations of creeping 
flow with high surface-tension forces as compared with the viscous forces. We have 
only examined cases in which the compound drop consists of one fluid completely 
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FIGURE 11.  Comparison of flow fields for different directions of inner-sphere motion. (a) V = -0.2U; 
(b)  V = 0.2U. The viscosities of the three fluids are of similar magnitude, y, = 0 . 5 ~ ~  = 0 . 5 , ~ ~ ;  
R = 0.5, E = 0.5. 

engulfing another. Through exact solutions in the Stokes-flow regime we have been 
able to acquire fundamental knowledge about the flow pattern and the dynamic 
stability of such three-fluid systems. While we have allowed large eccentricities in our 
solution, it is quite clear that in many instances we may have very large fluid 
pressures that would disallow the spherical-interfaces approximation. The question 
of deformation is currently under examination. 

From the present analysis we draw some important conclusions about the 
behaviour of translating compound drops. For a compound drop of specified 
composition moving through a given fluid in a force field there would, in general, be 
relative motion between the two spherical surfaces. In  some cases the net viscous force 
on the inner sphere would exactly balance the buoyant force without any relative 
motion. These are cases of equilibrium. In general we find either two or four equilib- 
rium positions of the inner sphere. However, only one or two of these, respectively, 
are stable. The other are unstable. In the case of equilibrium for a spherically con- 
centric c u e  the behaviour is metastable. We also see that an equilibrium 
configuration is highly sensitive to small changes in the buoyant force on the inner 
sphere. 

This work represents a fundamental advancement in relation to direct-contact 
heat/mass exchange and liquid-membrane technology. Also of interest in this context 
are cases in which the innermost fluid (fluid 1) experiences growth or collapse owing 
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to evaporation or condensation, respectively. The present analysis did not treat such 
cases. However, they are currently being examined. Our efforts are also being focused 
on situations in which we have compound drops with one fluid partially contacting 
the second. The heat/mass-transfer aspects of such systems are also under examina- 
tion, both theoretically and experimentally. 

The authors are very grateful for the support of this research from the USC Faculty 
Research & Innovation Fund and the National Science Foundation (Grant no. MEA 
83-51432). 

Appendix A 
With the solution for the stream functions given by (2.20), (2.32)-(2.34) the 

unknown integration constants A,, B,, C,, D ,  and En may be obtained by satisfying 
the interface conditions (2.24), (2.25), (2.26b), (2.27), (2.28). These conditions lead 
to a set of 5 x 5 linear algebraic equations for these constants. The solution to this 
set yields the following: 

A ,  = (UA(,‘) + VAf)) c2; 

B ,  = (UB(,‘) + VBf)) c2; 

c, = (Ucp + VCf’) c2; 

D, = (UDC,l) + VDf’) c2 ; 

(A 1) 

(A 2) 

(A 3) 

(A 4) 

En = (UE(,‘) + VEf)) c2 ; 
where 
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I- and 

The terms on the right-hand side of (A 17)-(A 19) are given by 

GF) = (n+f)  - sinh[(n+f) ([13-523)]+ Lk (2n+ 1)  cosh[(n+f) (Slr-C2s)l}. (A 29) G: P2 
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Appendix B 
Drag-forces calculation 

With the flow field described by the stream functions in the form given by (2 .31) ,  
(2.32) the drag force on each sphere can be obtained by following Stimson &, Jeffery 
(1926).  In particular, for the outer sphere we have 

and for the inner sphere 

f D = -  p 3 x 2 4 2  ( 2 n + 1 )  (A:(3) +B;CU+C,*(U+D*(3) n ) -  (B 2 )  
n-1 

By carrying our some lengthy algebra, the constants A,*($), B,*O, C,*@) and D,*(i) can 
be related to An, Bn, Cn, Dn and En, which are given by (A l ) - (A  29) .  By noting that 
these coefficients are linear in U and V ,  it is clear that fD and FD exhibit a similar 
behaviour to that as given by (3.1-2). The coefficients a, /?, y and 6 in (3 .1 )  and (3 .2)  
are given by a = xp, 2 4 2  R2, sinh E2, S,, 
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